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We propose and study an evolutionary minority game(EMG) in which the agents are allowed to choose
among three possible options. Unlike the original EMG where the agents either win or lose one unit of wealth,
the present model assigns one unit of wealth to the winners in the least popular option, deducts one unit from
the losers in the most popular option, and awardsRs−1,R,1d units for those in the third option. Decisions
are made based on the information in the most recent outcomes and on the characteristic probabilities of an
agent to follow the predictions based on recent outcomes. Depending onR, the population shows a transition
from self-segregation in difficult situationssR,Rcd in which the agents tend to follow extreme action to
cautious or less decisive action forR.Rc, whereRcsNd is a critical value for optimal performance of the
system that drops to zero as the number of agentsN increases.
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I. INTRODUCTION

Agent-based models of complex adaptive systems[1]
have recently attracted much attention among scientists in
different research areas[2–4]. Typically, these models con-
sist of a competing population in which agents decide based
on some global information. The information is, in turn, the
result of the collective behavior of the population. An out-
standing example of an agent-based model is that of the mi-
nority game(MG), which is a binary version of Arthur’s bar
attendance problem[5], proposed by Challet and Zhang[6].
In the MG, agents compete to be in a minority group and
make decisions based on information generated by the ac-
tions of the agents in previous rounds without direct interac-
tion among the agents. The population show interesting co-
operative actions[7–10]. The MG forms the basis of many
interesting agent-based models in recent years[11], and
many of its variations were proposed in connection to pos-
sible applications in areas such as complex systems and
econophysics[3]. These variations differ from the original
MG mainly in the way in which the adaptive ability of the
agents is introduced into the models.

In the evolutionary minority game(EMG) proposed by
Johnsonet al. [12–16], an odd numberN of agents decide to
choose one of two options, 0 or 1, at each time step. The
agents who are in the minority(majority) group win (lose)
and are awarded(deducted) one point. Every agent holds the
same dynamical strategy of simply following the most recent
trend, together with two individual parameters, namely a
score and a probabilityp s0øpø1d. The probabilityp is the
chance that an agent decides to follow the strategy’s predic-
tion and 1−p is the chance that the agent decides to act
opposite to the current trend. Thep value of an agent is
allowed to change, if the agent does not perform well. If the

score of an agent drops below a thresholddsdø0d, the agent
replaces hisp value by a new value randomly taken within a
ranger of the originalp value and his score is reset to zero.
The most interesting feature in EMG is that agents who be-
have in an extreme way(i.e., usingp<0 andp<1) perform
better than the cautious ones(i.e., using p<0.5) [12,13].
This in turn leads to a self-segregation of the population in
the sense that the distribution ofp values tends to peak at
p<0 andp<1. Hod and Nakar[17] studied a modified ver-
sion of EMG with a biased payoff function, i.e., the points
awarded to winners and deducted from losers are different.
The authors found that self-segregation occurs only if the

ratio R̄ of the point awarded to the point deducted is greater

than or equal to some valueR̄c. Note thatR̄c depends on the

size of the population. In the limit of a large population,R̄c

→1. For R̄, R̄c, i.e., corresponding to difficult situations in
which winning in a turn cannot compensate for losing in
another turn, the distribution ofp values shows the feature of
clustering by which agents tend to be more cautious or less
decisive and take onp values around 0.5.

Motivated by real-life scenarios in which there may be
more than one winning decision with different payoffs and

by the different behavior of the modified EMG[17] for R̄

ù R̄c andR̄, R̄c, we propose and study a generalized version
of EMG with three possible options. The agents in the most
(least) popular option are deducted(awarded) one point,
while the agents in the third option are awardedR points,
where R may be positive or negative withuRu ,1. Each
agent has the probabilitiessp1,p2,p3=1−p1−p2d to follow
the prediction of the most current trend of the outcomes. It is
found that a transition from self-segregation in the distribu-
tion of p values to cautious behavior occurs asR changes. At
some critical valueRc, the system performs optimally. The
plan of the paper is as follows. In Sec. II, the three-option
EMG is defined. We present and discuss results of detailed
numerical simulations in Sec. III. Results are summarized in
Sec. IV.
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II. THREE-OPTION EVOLUTIONARY MINORITY GAME

The present model represents a generalization of the origi-
nal EMG [12] from two options to three options. Our model
is motivated by situations in which there may be more than
one winning or losing options. Many agent-based models
were proposed, for example, with possible applications re-
lated to the features observed in financial markets[3]. Taking
the financial market as an example, agents may have many
choices on whether to invest on the stock market, the money
market, bonds, derivatives, etc., depending on the availabil-
ity of funds, the level of risk that one may want to handle,
and the agent’s confidence level. Usually a market of higher
risk also brings a higher earning if the correct investment is
made. Within a chosen market, there are good investments
and bad investments. Thus, there may be several good deci-
sions among the various markets at the same time. A similar
situation also happens when one decides on the options for
pension fund investments, for which choices such as growth,
balanced, and stable funds are available. On the more enter-
taining side, betting on horse racing also provides choices of
different levels of risk through different betting pools like
win, place, quinella(i.e., betting on the first and second
places not in order), etc. All of these situations involve the
choice of several options, with a different payoff for each
option.

To include multiple options into EMG, we consider a
numberN of agents whereN is not a multiple of 3. Each
agent chooses among three options, say, 1, 2, and 3, at each
time step. The agents in the side with the least(most) number
of agents, i.e., in the minority(majority) side, win(lose) and
are awarded(deducted) one point, while the agents in the
third option with intermediate number of agents getR point,
where R may be negative or positive anduRu,1.
The outcome in increasing number of agents, i.e., increasing
popularity, choosing the three optionssV1std ,V2std ,V3stdd
at the time stept forms the publicly known information of
the game. For example, the outcome(3,1,2) implies that
option 3 (2) is the least(most) popular option. Every agent
uses the set of outcomes of the most recentm time
steps, mstd=hsV1st−md,V2st−md,V3st−mdd,¯ ,sV1st−1d,
V2st−1d,V3st−1ddj, as the information to predict the current
trend and the outcome at time stept. For givenm, there are
a total of 3m32m differentmstd. The agents are also provided
with a strategy that corresponds to the outcomes of the most
recent occurrences of each of the 3m32m possiblem, as in
the original EMGf12g. This strategy gives the most recent
trend, i.e., what happened in terms of popularity among the
three options the last time that a particularm occurred. The
strategy is dynamical in the sense that it changes as the game
proceeds.

At any time step of the game, each agent carries his own
set of probabilitiessp1,p2,p3=1−sp1+p2dd, with 0øp1ø1,
0øp2ø1, and 0ø sp1+p2dø1. Given the most recentm
outcomes, i.e., for givenmstd, an agent has the probabilityp1

sp3d to choose the predicted least(most) popular option as
suggested by the strategy, and probabilityp2 to follow the
prediction on the intermediate option. Initially, thep value of
each agent is assigned randomly, and the score is set to zero.

As the game proceeds, the performance is registered in the
score of the agents. If an agent’s score falls below a certain
threshold valuedsdø0d, he is allowed to replace hisp val-
ues by new values ofp1 andp2 within a ranger centered at
the current valuesp1 and p2, and his score is reset to zero.
Since p3=1−p1−p2, it is sufficient to work in thep1-p2
space. A reflective boundary condition[12] is imposed in the
sp1,p2d space to ensure that the requirements 0øpiø1
si=1,2,3d are satisfied. Therefore, evolution comes in by al-
lowing agents to modify theirp values. The present model is
different from an earlier version of multiple-choice EMG
proposed by Metzler and Hornf18g in that we allow for
possibly more than one winning option. The model is also
different from the previously proposed multiple-choice MG
f19,20g in that the second least popular option may also be a
winning choice and adaptability is introduced through thep
values instead of different strategies assigned to the agents.

III. RESULTS

Extensive numerical simulations have been carried out to
study thep-value distributionPsp1,p2d in the population.
Consider a system withN=1001 agents,m=3, r =0.2, and
d=−4. Figure 1 shows typicalPsp1,p2d on a grey-scale two-
dimensional plot projected on to thep1-p2 plane for the dif-
ferent values ofR (R=−0.5, 0.043, 0.5). Results are obtained
by averaging over ten independent runs for each value ofR,

FIG. 1. The distributionPsp1,p2d of the p values among the
agents in a system ofN=1001 with r =0.2, m=3, d=−4 for (a) R
=−0.5, (b) 0.043, and(c) 0.5, projected on to thep1-p2. The grey
scale indicates the value ofPsp1,p2d.
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with an initially uniform distribution. In each run, the distri-
bution is obtained in a time window of 105 time steps, after
transient behavior dies off. In constructingPsp1,p2d, the p1
and p2 axes are each divided into 25 divisions, i.e., each
division corresponds to 0.04. The distributionPsp1,p2d is
normalized so thateePsp1,p2ddp1dp2=1. The distribution
Psp1,p2d for R=−0.5 is rather flat[see Fig. 1(a)], implying
that there is no advantage in having any specific set of
sp1,p2,p3d over others. AsR increases, the number of agents
taking on extreme actions[sp1,p2,p3d<s1,0,0d or (0,1,0) or
(0,0,1)], i.e., persistently making a certain choice, increases,
and there exists a small range ofR in which Psp1,p2d<0 for
intermediate values ofsp1,p2d [see Fig. 1(b)]. The distribu-
tion Psp1,p2d is nearly symmetric aboutsp1<0.3,p2<0.3d
with peaks aroundsp1,p2d=s0,1d, (1,0) and (0,0). This be-
havior is analogous to the segregation of agents into extreme
actions in the original EMG[12–15]. The result implies that
in order to flourish in such a population in situations for
which R<0, an agent should behave in an extreme way. This
segregation behavior leads to an enhancement in the perfor-
mance of the population as a whole in that the number of
agents in the least popular option takes on a value approach-
ing the limit N/3, as allowed by the definition of the winning
minority side. Although results are shown only for the case
of m=3 and d=−4, the steady-state distributionPsp1,p2d
does not depend sensitively onm andd, and the initial dis-
tribution. WhenR is further increased[see Fig. 1(c)], the
game allows for more winners than losers. In this case, the
agents become less decisive or cautious. The distribution
shows a peak at aboutsp1<0.36,p2<0.28d, implying that
the strategy’s prediction of the winning option will be too
crowded to win. It should be noted that the steady-state dis-
tribution in this case is dependent on the initial distribution.
It is analogous to the freezing phenomena in the original
EMG when the resource level is high[16]. Here,R plays the
role of a resource level in that a positiveR implies a majority
of agents will earn a reward per turn. The lifespanLsp1,p2d,
defined as the average duration for an agent holdingsp1,p2d
between modifications ofp values, shows similar behavior as
the distributionPsp1,p2d.

The performance of the system can be related to the av-
erage number of agents in each option and the fluctuations
(variance) in the number of agents making a particular
choice over time. Figure 2 shows the average fraction of
agents(right axis) in the most(least) popular option and the
third option and the variances2/N in the number of agents
(left axis) for different values ofR (m=3, d=−2 andr =0.2),
respectively. The average number of agents in each option
takes on values close toN/3, with the winning option deter-
mined by a margin of about ten agents in a system withN
=1001. ForR,0, i.e., when there are more losers than win-
ners, the fraction of agents in each option is insensitive toR.
As R increases to the vicinity ofR<0, the average fraction
of agents in the least(most) popular option reaches a maxi-
mum (minimum) at some valueRc with Rc<0, signifying an
enhanced performance of the system. Interestingly, the frac-
tion of agents in the third(intermediate) option remains flat
and close to 1/3 over a wide range ofR. As R is further

increaseds0,R,1d, more agents choose to follow the strat-
egy’s prediction on the least popular option and the predicted
option becomes the most popular and hence too crowded to
win. As a result, fewer agents choose the least popular(win-
ning) option.

The dependence of the variances2/N on R, for each of
the options, is nonmonotonic and shows a corresponding
drop and reaches a minimum atR<Rc. A smaller fluctuation
implies a higher number of winners per turn, and hence bet-
ter performance as a whole. The results imply an optimum
cooperation in the population. ForR.Rc, the variance in-
creases withR. For comparison, the dashed line gives the the
variancesrand

2 /N for random decisions in a multiple-choice
game which is given by

FIG. 2. The average fraction of agents(right axis) taking the
three options(different symbols) and the corresponding variances
s2/N (left axis) for different values ofR. Other parameters arem
=3, d=−2, and r =0.2. The lines are a guide for the eyes. The
dashed line gives the variance in Eq.(1) corresponding to random
decisions.
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srand
2

N
=

1

N
o
m=0

N

qN−ms1 − qdmCN
mssN − md − Nqd2, s1d

where q is the probability of taking a side. For the three-
option case,q=1/3, andsrand

2 /N=2/9. It should be noted
that the variances2/N for all the values ofR studied is
smaller thansrand

2 /N, implying that the agents are actually
benefitted from the evolutionary nature of the game. Thus,Rc
signifies anoptimalreward(resource) of the system in that at
R=Rc, a maximum fractionof the total possible reward per
turn, e.g.,sN−2d /3−s1−Rds1+sN−2d /3d for N=1001, is ac-
tually awarded to the agents.

To look closer into the change in the agents’ behavior for
different values ofR, it is convenient to study the separation
in the p values among the agents in the population. We de-
fine an averaged separationS by

S=
2

NsN − 1dT o
t=1

T

o
i,j=1

N

o
a=1,2,3

fpasid − pas jdg2, s2d

where T is the time window for taking the average. The
separationS is thus a mean over the difference squared of the
p values of the agents. Segregation inp values among the
agents corresponds to a larger value ofS. Figure 3 shows the

average separationS for different population sizesN=1001,
500, 200, and 101sm=3,r =0.2,d=−4d. For negativeR, the
fraction of agents taking extreme action is small, so the av-
erage reduced distance is small. AsR increases, more agents
show extreme behavior, resulting in a rapid increase inS
with a maximum nearR=Rc. The peak inS becomes nar-
rower as the system size becomes larger. ForR.Rc, the
separationS drops quite rapidly and attains a value smaller
than that ofR,0. The results in Fig. 3 indicate that we may
identify the value ofRcsNd as the value ofR at which the
separationS attains a maximum. The resultingRcsNd (inset
of Fig. 3) shows thatRc drops monotonically withN to a
value ofRc<0.04 forN=1001. The trend of the results pro-
poses thatRc may approach the value of 0 asN is further
increased.

IV. SUMMARY

We have proposed and studied a three-option EMG with
different payoffs to the agents in each of the options. Inter-
esting behavior, including self-segregation into extreme
groups and nondecisiveness, are found, depending on the
payoff to the third option(besides the minority and majority
options). In difficult situationssR,Rcd, segregation occurs
and the agents prefer to take extreme action(sp1,p2,p3d
<s1,0,0d or (0,1,0) or (0,0,1)). For R.Rc, the p values of
the agents tend to cluster at a common location. Detailed
analysis on the average number of agents taking each option
and the corresponding variance revealed an optimal perfor-
mance of the system at some valueRc. Studies on systems of
different sizes showed thatRc drop nearly to zero as the
number of agentsN in the system increases. A negative and
positive value ofR correspond to very different situations in
that forR,0, there is a majority of losers in the population,
while for R.0 the system allows for a majority of winners.
The present model, employing a reflective boundary condi-
tion, represents a natural and straight forward generalization
of the original two-option EMG[12]. It will be interesting to
investigate the effects of different boundary conditions.
However, we note that there is no natural and unique way to
define, for example, a periodic boundary condition for mul-
tiple options. In addition, the feature thatRc→0 in the large
population size limit in the present model is similar to that of

R̄c→1 in Ref. [17]. Analytically, it is therefore possible to
explain results of multiple-options EMG presented here
along the line of the theory of the two-option EMG[21].
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FIG. 3. The average separation of probabilitiesS among the
agents for different number of agentsN=1001, 500, 200, and 101 in
the system. Other parameters arem=3, r =0.2, d=−4. The separa-
tion Sshows a maximum atRcsNd. The inset shows the dependence
of Rc on N.
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